\qquad Block \qquad - 1 -

Geometry Journal: 3-Dimensional Objects

| Post, Thm, or Defn | Conclusion |
| :--- | :--- | :--- | :--- |
| 1. Area of 2-Dimensionals
 A] Square: $s \cdot s=s^{2}$ | A] $A=s^{2}=4^{2}=16 \mathrm{~cm}^{2}$ |

Name \qquad Block \qquad - 2 -

4.Square Pyramid: Base Is Square	$\ell=5 \mathrm{~cm}$	$\begin{array}{ll} \left\{\begin{array}{c} c^{2}=a^{2}+b^{2} \\ 5^{2}=4^{2}+h^{2} \end{array}\right\} h=3 & =\begin{array}{l} B=L W \\ \end{array} 8^{2}=64 \end{array}$
$\begin{aligned} & V=\frac{1}{3} B h \quad h=\text { vertical height } \\ & L A=\frac{1}{2} \ell p \quad \ell=\text { slant height } \\ & S A=L A+B \end{aligned}$	Find: h, B, p, LA., SA, V	
5. Cylinder: Bases are Circles $\begin{aligned} & V=\pi r^{2} h \\ & L A=2 \pi r h \end{aligned}$ $S A=2 \pi r(h+r)$	$\text { height }=4.5 \text { in } \quad \text { diameter }=1.6 \text { in }$ Find SA and Volume:	$\begin{aligned} r & =\frac{1}{2} d=\frac{1}{2}(1.6)=0.8 \mathrm{~cm} \\ S A & =2 \pi r(h+r) \\ & =2 \pi(0.8)(4.5+0.8) \\ & =8.48 \pi \approx 26.6 \mathrm{~cm}^{2} \\ v & =\pi r^{2} h \\ & =\pi\left(0.8^{2}\right) 4.5 \\ & =2.88 \pi \approx 9.04 \mathrm{~cm}^{3} \end{aligned}$
6.Cone: Base is a Circle $\begin{aligned} & V=\frac{1}{3} \pi r^{2} h \\ & L A=\pi r \ell \\ & S A=\pi r(\ell+r) \quad \ell=\text { slant height } \end{aligned}$	Find $\ell, L A, S A, V$	

Name \qquad Block \qquad - 3 -
7. Sphere
$S A=4 \pi r^{2}$

Find amount of leather covering the soft ball.

$$
r=6
$$

$$
S A=4 \pi\left(6^{2}\right)
$$

$$
=4 \pi(36)
$$

$$
S A=144 \pi \mathrm{~cm}^{2} \quad \text { (exact) }
$$

$$
\approx 144(3.14)=
$$

$452.16 \mathrm{~cm}^{2}$

8. Sphere $V=\frac{4}{3} \pi r^{3}$		$\begin{aligned} V & =\frac{4 \pi r^{3}}{3} \\ & =\frac{4 \pi(15)^{3}}{3} \\ & =4500 \pi \mathrm{~cm}^{3} \text { exact } \\ & 4500(3.14) \approx 14130 \mathrm{~cm}^{3} \end{aligned}$
9. For ~ Polygons: ratio of areas $=(\text { scale factor })^{2}$ (If the length of a rectangle is increased by a factor of 3 the area is increased by a factor of 9)	Given: 2 similar rectangles The area of the smaller is 120 cm^{2}, their widths have a ratio of $1: 5$, what is the area of the larger rectangle.	$\begin{gathered} \text { scale factor }= \\ \frac{\text { area small }}{\text { area } \operatorname{larg} e}=\left(\frac{1}{5}\right)^{2} \\ \frac{120}{x}=\frac{1}{25} \end{gathered}$ area of large rectangle $=3000 \mathrm{~cm}^{2}$
10. For ~ Polygons: ratio of volumes $=(\text { scale factor })^{3}$ (If the radius of a cone is increased by a factor of 3 , the volume is increased by a factor of $27\left(3^{3}\right)$)	Given: 2 similar pyramids Their heights have a ratio of $3: 2$. The volume of the smaller pyramid is $450 \mathrm{~cm}^{3}$. Find the volume of the larger pyramid	Scale factor: $\frac{3}{2}$ so volume ratio: $\left(\frac{3}{2}\right)^{3}=\frac{27}{8}$ $\begin{aligned} \frac{27}{8}=\frac{x}{450} & 12150=8 x \\ & x=1518.75 \mathrm{~cm}^{3} \end{aligned}$

