Post, Thm, or Defn	Example/Drawing	Conclusion
1. Definition of Similar Polygons:	Given : pentagon ABCDE ~ pentagon FGHIJ Find m∠F,m∠J,m∠B, x and y.	m∠F = <u>60</u> ° (corr. to ∠A) m∠J = <u>140°</u> (corr. ∠ E) m∠B = 540 - (140+60+100+80) - 160°
A] corr∠'s ≅	A 60. 14 F	$x = \frac{160}{x}$ 980 = 50x 19 6 = x
B] Corr. sides proportional	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$y = \frac{14}{50} = \frac{60}{y}$ 3000 = 50y214.3 = y
2. Scale Factor:	Given: pentagon ABCDE ~	
ratio of corr. sides of similar polygons [must be simplified]	pentagon FGHIJ $E \xrightarrow{f_{40}} B \xrightarrow{f_{50}} G \xrightarrow{f_{50}} G \xrightarrow{f_{60}} X \xrightarrow{I} \xrightarrow{I \xrightarrow{100} 80} H$	$\frac{14}{50} = \frac{7}{25}$ Scale factor
3. For ~ Polygons:	Given : above ~ pentagons	
ratio of perimeters = scale factor [If one figure is 3 times larger than the other, the	If pentagon ABCDE has perimeter = 280 cm, what is the perimeter of pentagon FGHIJ?	$\frac{perimeter \ of \ small}{perimeter \ of \ l \arg e} = \frac{7}{25}$ $\frac{280}{280} = \frac{7}{25}$ x = 1000 cm
perimeters are also 3:1]		x 25
 4. For ~ Polygons: ratio of areas = (scale factor)² (If the length of a rectangle is increased by a factor of 3 the area is increased by a factor of 9) 	Given : 2 similar rectangles The area of the smaller is 120 cm ² , their widths have a ratio of 1:5, what is the area of the larger rectangle.	scale factor = $\frac{1}{5}$ $\frac{area small}{area l arg e} = \left(\frac{1}{5}\right)^2$ $\frac{120}{x} = \frac{1}{25}$ area of large rectangle = 3000cm ²

Geometry Journal: Similarity

Given: 2 similar pyramids	Scale factor : $\frac{3}{2}$ so
Their heights have a ratio of 3:2. The volume of the smaller pyramid is 450cm ³ . Find the volume of the larger pyramid	volume ratio: $\left(\frac{3}{2}\right)^3 = \frac{27}{8}$ $\frac{27}{8} = \frac{x}{450}$ 12150= 8× x = 1518.75 cm ³
Given : BD //AE Prove : ΔCBD~ΔCAE C	A ∠C≅∠C reflexive
	A $\angle 1 \cong \angle 2$ // lines corr $\angle s \cong$
$A^2 \rightarrow E$	Δ CBD~ΔCAE ΑΑ~
Are the $\Delta s \sim ?$	Check ratios:
$ \begin{array}{c} B \\ 6 \\ 9 \\ A \\ 12.6 \\ D \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ F \end{array} $	$\frac{6}{20} = \frac{9}{30} = \frac{12.6}{42}$ 0.3 = 0.3 = 0.3 \Delta ABC ~ \Delta EFD by SSS~
Are $\triangle ABC$ and $\triangle DEF \sim$?	For SAS : check ratios of sides
$B \xrightarrow{20} D$ $E \xrightarrow{20} F$	s s A $\frac{9}{12} = \frac{15}{20}$ ∠E ≅ ∠C .75 = .75 given not inc. side SO Δs are not ~.
	Given: 2 similar pyramids Their heights have a ratio of 3:2. The volume of the smaller pyramid is 450cm ³ . Find the volume of the larger pyramid Given: BD //AE Prove: $\triangle CBD \sim \triangle CAE$ C B A A A A A A A A A A A B A A A A A A A A A A A A A

Name	Block		
9. Triangle Proportionality If a segment is drawn // to the third side , then it cuts proportional segments.		$\frac{AB}{BC} = \frac{DE}{DC}$ $\frac{4}{7} = \frac{9}{x}$ $4x = 72$ $x = 18$	
 10. The mid-segment of a Δ, endpoints are midpoints of 2 sides of a Δ, it is: 1] // to the third side 2] ½ length of the third side 	A X B C 14 cm D	\overline{AB} // \overline{CD} \overline{AB} = 7 cm \overline{AB} is the mid-segment of ΔCED	
11.			
12			