\qquad
\qquad
Geometry Journal: Similarity

Post, Thm, or Defn	Example/Drawing	Conclusion
1. Definition of Similar Polygons: A] corr \angle 's \cong B] Corr. sides proportional	Given: pentagon $A B C D E$ ~ pentagon FGHIJ Find $m \angle F, m \angle J, m \angle B, x$ and y.	$\begin{aligned} & m \angle F\left.=60^{\circ} \text { (corr. to } \angle A\right) \\ & m \angle J\left.=140^{\circ} \text { (corr. } \angle \mathrm{E}\right) \\ & \mathrm{m} \angle B=540-(140+60+100+80) \\ &=160^{\circ} \\ & x=\frac{14}{50}=\frac{x}{70} \quad 980=50 \times 19.6=x \\ & y=\frac{14}{50}=\frac{60}{y} \quad 3000=50 y \underline{214.3}=y \end{aligned}$
2. Scale Factor: ratio of corr. sides of similar polygons [must be simplified]	Given: pentagon ABCDE ~ pentagon FGHIJ	$\frac{14}{50}=\frac{7}{25}$ Scale factor
3. For ~ Polygons: ratio of perimeters = scale factor [If one figure is 3 times larger than the other, the perimeters are also 3:1]	Given : above ~ pentagons If pentagon $A B C D E$ has perimeter $=280 \mathrm{~cm}$, what is the perimeter of pentagon FGHIJ?	$\frac{\text { perimeter of small }}{\text { perimeter of } l \arg e}=\frac{7}{25}$ $\frac{280}{x}=\frac{7}{25} \quad x=1000 \mathrm{~cm}$
4. For ~ Polygons: ratio of areas $=(\text { scale factor })^{2}$ (If the length of a rectangle is increased by a factor of 3 the area is increased by a factor of 9)	Given : 2 similar rectangles The area of the smaller is 120 cm^{2}, their widths have a ratio of $1: 5$, what is the area of the larger rectangle.	$\begin{gathered} \text { scale factor }=\frac{1}{5} \\ \frac{\text { area small }}{\text { area } \operatorname{large} e}=\left(\frac{1}{5}\right)^{2} \\ \frac{120}{x}=\frac{1}{25} \end{gathered}$ area of large rectangle $=3000 \mathrm{~cm}^{2}$

\qquad
\qquad

5. For ~ Polygons: ratio of volumes $=(\text { scale factor })^{3}$ (If the radius of a cone is increased by a factor of 3, the volume is increased by a factor of $27\left(3^{3}\right)$)	Given: 2 similar pyramids Their heights have a ratio of $3: 2$. The volume of the smaller pyramid is $450 \mathrm{~cm}^{3}$. Find the volume of the larger pyramid	Scale factor : $\frac{3}{2}$ so volume ratio : $\left(\frac{3}{2}\right)^{3}=\frac{27}{8}$ $\begin{aligned} & \frac{27}{8}=\frac{x}{450} \quad 12150=8 x \\ & x=1518.75 \mathrm{~cm}^{3} \end{aligned}$
6. To prove 2Δ 's ~: AA~ (angle, angle, similarity) Find 2 pairs of $\cong \angle s$	Given: $B D / / A E$ Prove: $\triangle C B D \sim \triangle C A E$	A $\angle C \cong \angle C \quad$ reflexive A $\angle 1 \cong \angle 2 \quad / /$ lines corr $\angle s \cong$ $\triangle C B D \sim \triangle C A E \quad A A \sim$
7. To prove 2Δ 's ~: SSS~ (side, side, side similarity) Find 3 pairs corresponding sides proportional-3 ratios must be the same.	Are the $\Delta s \sim$?	Check ratios: $\begin{aligned} & \frac{6}{20}=\frac{9}{30}=\frac{12.6}{42} \\ & 0.3=0.3=0.3 \end{aligned}$ $\triangle A B C \sim \triangle E F D$ by $S S S \sim$
8. To prove 2Δ 's ~: SAS~ (side, angle, side similarity) Find 2 pairs of proportional corr. sides with one pair of \cong included angles. (2 ratios and $\cong \angle$ between)	Are $\triangle A B C$ and $\triangle D E F \sim ?$	For SAS: check ratios of sides $\begin{array}{cc} S & S \\ \frac{9}{12}=\frac{15}{20} & \angle E \cong \angle C \\ .75=.75 & \begin{array}{c} \text { given } \\ \text { not inc. side } \end{array} \end{array}$ SO Δs are not ~.

Name

\qquad

Block

9. Triangle Proportionality

If a segment is drawn // to the third side, then it cuts proportional segments.

$$
4 x=72
$$

$$
x=18
$$

10. The mid-segment of a Δ, endpoints are midpoints of 2 sides of a Δ, it is:

1] // to the third side

2] $1 / 2$ length of the third side

$$
\begin{aligned}
& \frac{A B}{B C}=\frac{D E}{D C} \\
& \frac{4}{7}=\frac{9}{x}
\end{aligned}
$$

$\overline{A B} / / \overline{C D}$
$\overline{A B}=7 \mathrm{~cm}$
$\overline{A B}$ is the mid-segment of $\triangle C E D$

