Geometry Journal: _Polygons and Congruent Triangles_

Post, Thm, or Defn	Example/Drawing	Conclusion	
1. <mark>Sum of the Interior</mark> ∠s	Find the measure of each	180(n - 2)	
of a Polygon = <mark>180(n-2)</mark>	interior angle of a regular	180(6 - 2)	
where n = number of	hexagon.	= 720 (sum of six angles)	
sides.	× ×	$\frac{720}{6}$ = 120° for each angle	
2. <mark>Sum of the exterior</mark> angles of a polygon = 360°	Find the measure of one ext. angle of a regular pentagon.	$\frac{360}{5} = 72$ Relationship of one int. angle with its ext. angle SUPPLEMENTARY!	
3.Sum of the interior	Find the measure of each	$\angle A + \angle B + \angle C = 180^{\circ}$	
angles of a triangle -	interior angle. B	2x+3 + 2x + x+7 = 180	
<mark>180(n-2)</mark> = 180(3-2) =	2x+3	5x + 10 = 180 5x = 170	
180°	A 2x x+7 C	x=34 so ∠A = 68 ∠B= 71 and ∠C = 41	
4.Exterior angle of a triangle = <mark>sum of remote</mark> interior angles.	Given: $m \angle 1 = 2x$ $m \angle 2 = 4x$ $m \angle 4 = 5x + 20$ 1 2	$m \angle 4 = m \angle 1 + m \angle 2$ 2x+4x = 5x + 20 x = 20 $m \angle 4 = 120^{\circ}$	

Block	
	2

Name _____ B

Post, Thm, or Defn	Example/Drawing	Conclusion
5. Largest/smallest angle is opposite Longest/shortest side.	$\begin{array}{c c} B \\ F \\ 3 \\ C \\ A \\ C \\ D \\ D \\ C \\ D$	 m∠C = 40° Draw arrow to opp sides BC > AC > AB angles ∠E > ∠F > ∠D
6. For a triangle to exist, the sum of any 2 sides must be GREATER THAN the THIRD SIDE {Add smallest two first}	Can these side measures construct a triangle? 1] 2, 3, 5 2] 4, 6, 7 3] 6, 4, 1	1] 2+3>5 NO 3+5>2 5+2>3 2] 4+6>7 6+7>4 Yes for all 7+4>6 3] 1+4>6 NO 4+6>1 6+1>4
7. Range of the measure of the third side (x)	If 2 sides of a Δ have measure 6cm and 4cm, can the third side measure:	Inequality: 6-4 < x < 6+4 <mark>2 < x < 10</mark>
$\left \frac{difference of 2}{other sides} \right < x < \begin{pmatrix} sum of \\ other 2 sides \end{pmatrix}$	1] 11cm 2] 10 cm 3] 2 cm 4] 5 cm	1] no (over) 2] no(on boundary) 3] no (on boundary) 4] yes (can be 5cm)
8. Isosceles \triangle Thm. In a \triangle , congruent sides are opp. congruent angles. Base angles of a isosceles \triangle are \cong .	Given: isosceles △ ABC with vertex angle B: name all ≅ parts. B A C	If $\overline{AB} \cong \overline{BC}$ then $\angle A \cong \angle C$ Converse: if $\angle A \cong \angle C$ then $\overline{AB} \cong \overline{BC}$.

Block	
-------	--

Name		Block 3	
Post, Thm, or Defn	Example/Drawing	Conclusion	
 9. Reflexive Property Sides are ≅ to themselves Angles are ≅ to themselves 	For this diagram only : ≅A C D	$\overline{AC} \cong \overline{AC}$	
 10. Definition of congruent Triangles (CPCTC) Corresponding parts of congruent triangles are congruent 	 Given: ΔCDB ≅ ΔAPQ 1] Name all ≅ parts 2] draw pictures with ≅ marks 3] Label vertices with correct letters. 	SIDES $\overrightarrow{CD} \cong \overrightarrow{AP}$ $\overrightarrow{DB} \cong \overrightarrow{PQ}$ $\overrightarrow{CB} \cong \overrightarrow{AQ}$ A Q ANGLES $\angle C \cong \angle A$ $\angle D \cong \angle P$ $\angle B \cong \angle Q$ B C	
<pre>11. SSS 2∆s <u>3 pairs of corr. sides</u> are ≅, then the ∆s are ≅</pre>	Given: $\overline{AB} \cong \overline{BC}$ and D is the midpoint of \overline{AC} . Prove: $\langle / \Delta ABD$ $\cong \Delta CBD$	planStatementsreasonS $\overline{AB} \cong \overline{BC}$ givenS $\overline{AD} \cong \overline{DC}$ def. MidptS $\overline{BD} \cong \overline{DB}$ reflex. \triangle ABD $\cong \triangle CBD$ SSS	
<pre>12. SAS 2\Deltas 2\Deltas 2 pair corr. sides ≅ 1 pr included angles ≅ {included = between the two ≅ sides}</pre>	$A \qquad B \qquad C \qquad C$	plan statementsreasonB is the midptgivenof \overline{AD} and \overline{CE} S $\overline{AB} \cong \overline{BD}$ def mdptA $\angle 1 \cong \angle 2$ vert. $\angle s$ S $\overline{EB} \cong \overline{BC}$ def mdpt Δ ABE $\cong \Delta DBC$ SAS	

Na	n	Ð

```
Block _____ 4
```

Post, Thm, or Defn	Example/Drawing	Conclusion
<pre>13 ASA in 2∆s</pre>	A 1 3 4 B	planstatementreason \overline{AB} // \overline{DC} , \overline{BC} // \overline{AD} GivenA $\angle 2 \cong \angle 4$ // lines AI
Then the Δs are \cong .	$\overrightarrow{AB} / / \overrightarrow{DC}, \overrightarrow{BC} / / \overrightarrow{AD}$	S $\overline{DB} \cong \overline{DB}$ reflexive prop A $\angle 3 \cong \angle 5$ // lines AI
	Prove: $\triangle ABD \cong \triangle CDB$	** ∆ABD ≅∆CDB ASA
14 AAS		plan statements reason
in 2∆s ∫ 2 pair corr. ∠s ≅	$A \qquad B Given: \\ \overline{BC} \cong \overline{DC} \\ \angle A \cong \angle E$	A ∠A≅∠E given
$\int 1 \text{ pr non- included sides } \cong$		A $\angle 1 \cong \angle 2$ vert. $\angle s$
Then the Δs are \cong .	D Prove:	S BC \cong DC given
	∆ABC≅∆	** $\triangle ABC \cong \triangle EDC AAS$
{non- included = not between}	-	
15 HL In 2 rt. Δ,	hypotenuse	plan statements reason rt. ∆s ∠ADB & ∠CDB are rt. ∠s given
∫1 pr. Hypotenuses ≅	leg leg	H $\overline{AB} \cong \overline{BC}$ given
1 pr. Of Legs are ≅	A leg D leg C	L $\overline{BD} \cong \overline{BD}$ reflex. prop.
	Given: $\angle ADB \& \angle CDB$ are rt. $\angle s$ and $\overline{AB} \cong \overline{BC}$ Prove: $\triangle ABD \cong \triangle CBD$	∆ABD ≅ ∆CBD HL