\qquad
\qquad

Geometry Journal: _Polygons and Congruent Triangles_

Post, Thm, or Defn	Example/Drawing	Conclusion
1.Sum of the Interior $\angle s$ of a Polygon $=180(n-2)$ where $n=$ number of sides.	Find the measure of each interior angle of a regular hexagon.	$\begin{aligned} & 180(n-2) \\ & 180(6-2) \\ & =720 \text { (sum of six angles) } \\ & \frac{720}{6}=120^{\circ} \text { for each angle } \end{aligned}$
2.Sum of the exterior angles of a polygon = 360°	Find the measure of one ext. angle of a regular pentagoh.	$\frac{360}{5}=72 .$ Relationship of one int. angle with its ext. angle \qquad SUPPLEMENTARY!
3.Sum of the interior angles of a triangle -$180(n-2)=180(3-2)=$ 180°	Find the measure of each interior angle.	$\begin{aligned} & \angle A+\angle B+\angle C=180^{\circ} \\ & 2 x+3+2 x+x+7=180 \\ & 5 x+10=180 \\ & 5 x=170 \quad \text { so } \angle A=68 \\ & x=34 \quad \angle B=71 \text { and } \angle C=41 \end{aligned}$
4. Exterior angle of a triangle = sum of remote interior angles.		$\begin{aligned} m \angle 4 & =m \angle 1+m \angle 2 \\ 2 x+4 x & =5 x+20 \\ x & =20 \\ m \angle 4 & =120^{\circ} \end{aligned}$

\qquad
\qquad

Post, Thm, or Defn	Example/Drawing	Conclusion
5. Largest/ smallest angle is opposite Longest/ shortest side.		1] $m \angle C=40^{\circ}$ Draw arrow to opp sides $\overline{B C}>\overline{A C}>\overline{A B}$ 2] draw arrows to opp. angles $\angle E>\angle F>\angle D$
6. For a triangle to exist, the sum of any 2 sides must be GREATER THAN the THIRD SIDE \{Add smallest two first\}	Can these side measures construct a triangle? 1] 2, 3, 5 2] $4,6,7$ 3] $6,4,1$	1] $2+3 \times 5 \mathrm{NO}$ $3+5>2$ $5+2 \times 3$ 2] 4+6>7 $6+7>4$ Yes for all $7+4>6$ 3] $1+4 \times 6 \mathrm{NO}$ 4+6>1 $6+1>4$
7. Range of the measure of the third side (x) $\left\|\begin{array}{l} \text { difference of } 2 \\ \text { other sides } \end{array}\right\|<x<\binom{\text { sum of }}{\text { other } 2 \text { sides }}$	If 2 sides of a Δ have measure 6 cm and 4 cm , can the third side measure: 1] 11 cm 2] 10 cm 3] 2 cm 4] 5 cm	Inequality: $\begin{gathered} 6-4<x<6+4 \\ 2<x<10 \end{gathered}$ 1] no (over) 2] no(on boundary) 3] no (on boundary) 4] yes (can be 5 cm)
8. Isosceles Δ Thm. In a Δ, congruent sides are opp. congruent angles. Base angles of a isosceles Δ are \cong.	Given: isosceles $\triangle A B C$ with vertex angle B : name all \cong parts.	If $\overline{A B} \cong \overline{B C}$ then $\angle A \cong \angle C$ Converse: if $\angle A \cong \angle C$ then $\overline{A B} \cong \overline{B C}$.

\qquad
\qquad

Post, Thm, or Defn	Example/Drawing	Conclusion
9. Reflexive Property Sides are \cong to themselves Angles are \cong to themselves	For this diagram only: \ldots	$\overline{A C} \cong \overline{A C}$
10. Definition of congruent Triangles (CPCTC) Corresponding parts of congruent triangles are congruent	Given: $\triangle C D B \cong \triangle A P Q$ 1] Name all \cong parts 2] draw pictures with \cong marks 3] Label vertices with correct letters.	SIDES
11. SSS $2 \Delta s$ 3 pairs of corr. sides are \cong, then the Δs are \cong	Given: $\overline{A B} \cong \overline{B C}$ and D is	$\begin{array}{ccc} \hline \text { plan } & \text { Statements } & \text { reason } \\ \mathrm{s} & \overline{A B} \cong \overline{B C} & \text { given } \\ \mathrm{s} & \overline{A D} \cong \overline{D C} & \text { def. Midpt } \\ \mathrm{s} & \overline{B D} \cong \overline{D B} & \text { reflex. } \\ \triangle A B D & \cong \triangle C B D & \mathrm{sss} \end{array}$
$\begin{aligned} & \text { 12. SAS } \\ & \begin{array}{l} 2 \Delta s \\ \left\{\begin{array}{c} 2 \text { pair corr. sides } \cong \\ 1 \text { pr included angles } \cong \end{array}\right\} \\ \text { \{included = between the } \\ \text { two } \cong \text { sides }\} \end{array} \\ & \text { then } \end{aligned}$	 Given : B is the midpt of $\overline{A D}$ and $\overline{C E}$ Prove $\triangle A B E \cong \triangle D B C$	plan statements reason B is the midpt given $\frac{o f}{\overline{A D} \text { and } \overline{C E}}$ def mdpt S $\overline{A B} \cong \overline{B D}$ def A $\angle 1 \cong \angle 2$ vert. $\angle \mathrm{s}$ S $\overline{E B} \cong \overline{B C}$ def mdpt $\triangle A B E \cong \triangle D B C$ SAS

Name \qquad
\qquad
4

Post, Thm, or Defn	Example/Drawing	Conclusion
$\begin{aligned} & 13 \text { ASA } \\ & \text { in } 2 \Delta s \\ & \left\{\begin{array}{l} 2 \text { pair corr. } \angle s \cong \\ 1 \text { pr included sides } \cong \end{array}\right\} \end{aligned}$ Then the Δs are \cong.	Given: $\overline{A B} / / \overline{D C}, \overline{B C} / / \overline{A D}$ Prove: $\triangle A B D \cong \triangle C D B$	plan $\overline{A B} / / \overline{D C}, \overline{B C} / / \overline{A D}$ statement Given A $\angle 2 \cong \angle 4 \quad / /$ lines $A I$ S $\overline{D B} \cong \overline{D B}$ A $\angle 3 \cong \angle 5 \quad / /$ lines $A I$ A ** $\triangle \mathrm{ABD} \cong \triangle C D B \quad A S A$
14 AAS $\begin{gathered} \text { in } 2 \Delta s \\ \left\{\begin{array}{c} 2 \text { pair corr. } \angle s \cong \\ 1 \text { pr non- included sides } \cong \end{array}\right\} \end{gathered}$ Then the Δs are \cong. \{non- included = not between\}		plan statements reason A $\angle A \cong \angle E$ given A $\angle 1 \cong \angle 2$ vert. $\angle S$ S $B C \cong D C$ given $* *$ $\triangle A B C \cong \triangle E D C$ $A A S$
15 HL In 2 rt. Δ, $\left\{\begin{array}{l} 1 \text { pr. Hypotenuses } \cong \\ 1 \text { pr. Of Legs are } \cong \end{array}\right\}$	Given: $\angle A D B \& \angle C D B$ are rt. $\angle s$ and $\overline{A B} \cong \overline{B C}$ Prove: $\triangle A B D \cong \triangle C B D$	plan rt. Δs statements $\angle A D B \& \angle C D B$ are rt. $\angle s$ reason H $\overline{A B} \cong \overline{B C}$ given L $\overline{B D} \cong \overline{B D}$ reflex. prop.

