Name \qquad
Date \qquad Block
Geometry Terms: Example/Diagram Conclusion

Angle: 2 rays with a common endpoint		$\angle A B C=\angle B=\angle 1$ Two rays: $\overrightarrow{B A}$ and $\overrightarrow{B C}$ Vertex is point B
Bisect: to divide into two equal parts		$\overline{A B}=\overline{B C}$ $\angle A B D=\angle D B C$
Collinear: points that lie on the same line		Pt A and $p t B$ are on the same line.
Coplanar: points/ lines that are in the same plane	A	Line I and line m are co-planar. They are both in plane A.
Corollary: a statement that follows directly from a theorem Mention only	EX: The acute angles of a right triangle are complimentary.	Since sum of angles $=180$ and $180-90=90$, The sum of the acute angles must be 90 .
Intersect: to meet or cross; the set of points figures have in common		The two lines cross at point X They have point X in common.
Line: a series of points extending in both directions ; has no thickness		Line $M N$ is represented as $\overleftrightarrow{M N}$
Line Segment: part of a line with definite endpoints.	$A \quad B$	Segment $A B$ is represented by $A B$

Ordered Pair: (x, y) used to locate points		The point is $(3,1)$. Over to the right 3 and up 1.
Parallel: do not intersect		Lines I and m are parallel: $/ / / m$
Plane: a flat surface that extends in all directs has no thickness	0	The box represents a plane called O. The walls the floor and the ceiling all represent planes.
Point: a definite location in space; has no size (•A)	A B •	Point B is in plane A
Postulate: accepted statement of fact; relationship between terms	EX: Through any two points, there is exactly one line.	We know it to be true because we cannot prove it untrue.
Ray: has one endpoint and continues in one direction; part of a line.	$\xrightarrow{\text { A }}$	Ray $A B=\overrightarrow{A B}$
Skew: neither parallel nor intersecting; not in the same plane		$\overline{A B}$ is skew to $\overline{D H}$
Space: set of all points	Boundless and three dimensional so cannot be drawn.	Will contain points, lines, and angles.
Theorem: a conjecture or conclusion that has been, or can be proven		Example: Two parallel lines cut by a transversal form alternate interior congruent angles $\angle 1 \cong \angle 2$

On A Separate Piece of Paper:

Draw a coordinate plane and label the x and y axes, origin, and quadrants.
Describe how to plot a point on a coordinate plane, for example $(5,-2)$

Go over from the origin 5 places to the right. Then go down two spaces.

	Name Geometry Terms: Date Example/Diagram	
Angle:		
Bisect:		
Collinear:		
Coplanar:		
Corollary:		
Intersect:		
Cine		

Plane:		
Point:		
Postulate:		
Ray:.		
Skew:		
Space:		
Theorem:		

On A Separate Piece of Paper:
Draw a coordinate plane and label the x and y axes, origin, and quadrants.
Describe how to plot a point on a coordinate plane, for example $(5,-2)$

